Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m
Used ordering:
Polynomial interpretation [25]:
POL(0) = 1
POL(p(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + x3
POL(s(x1)) = 2 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.